22 research outputs found

    Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing—The Port of Aalborg Case Study

    Get PDF
    Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Modeling and Simulation of a PI Controlled Shunt Active Power Filter for Power Quality Enhancement Based on P-Q Theory

    No full text
    The design of reliable power filters that mitigate current and voltage harmonics to meet the power quality requirements of the utility grid is a major requirement of present-day power systems. In this paper, a detailed systematic approach to design a shunt active power filter (SAPF) for power quality enhancement is discussed. A proportional–integral (PI) controller is adopted to regulate the DC-link voltage. The instantaneous reactive power theory is employed for the reference current’s extraction. Hysteresis current control is used to obtain the gate pulses that control the voltage source inverter (VSI) switches. The detailed SAPF is developed and simulated for balanced nonlinear loads and unbalanced nonlinear loads using MATLAB/Simulink. The simulation results indicate that the proposed filter can minimize the harmonic distortion to a level below that deployed by the Institute of Electrical and Electronics Engineers (IEEE) standards

    Performance of Dual-Axis Solar Tracker versus Static Solar System by Segmented Clearness Index in Malaysia

    No full text
    The performance of Dual-Axis Solar Tracker (DAST) and Static Solar System (SSS) with respect to clearness index in Malaysia is presented. An attempt to investigate the correlation between clearness index with energy gain and efficiency of DAST over SSS is being done experimentally. A good correlation could not be found out from the daily clearness index. It is due to the more profound advantage of DAST in the morning and evening compared to midday as it is able to follow the sun’s position. Hence, the daily clearness index is divided into three segments which are morning, midday, and evening to interpret the energy gain and efficiency better. A clearer correlation with low standard deviation can be observed on the segmented clearness index analysis. The energy gain and efficiency of seven cities in Malaysia is being estimated with the segmented clearness index and compared to the result generated from anisotropic radiation model. A similar trend is obtained and it has shown that the segmented clearness index could be utilized as a graphical method for estimation of energy gain and efficiency of DAST over SSS

    Design of Weighted Wide Area Damping Controller (WWADC) Based PSS for Damping Inter-Area Low Frequency Oscillations

    No full text
    Wide Area Measurement System (WAMS) can extend and effectively improve the power system stabilizers (PSS) capability in damping the inter-area low frequency oscillations in interconnected bulk power systems. This paper proposes the implementation of Weighted Wide Area Damping Controller (WWADC) in which weighted factors are introduced for each remote feedback signals. Modal analysis approach is implemented for the purpose of identifying the optimal location as well as the input signals’ optimal combination of WWADC. Based on the linearized model, Differential Evolution (DE) algorithm is applied to search for optimal controller parameters and optimal weighted factors. The successful application of the proposed approach is achieved in two power networks; the two-area 4-machine system and the IEEE-39 bus 10-machine system. The analysis of the eigenvalue and non-linear time domain simulations indicate that damping the inter-area oscillations and improving the system stability irrespective of the severity and the location of the disturbances can be effectively achieved by WAD

    Feasibility Study and Comparative Analysis of Hybrid Renewable Power System for off-Grid Rural Electrification in a Typical Remote Village Located in Nigeria

    No full text
    The introduction of a decentralized energy system in remote rural areas with limited or no access to power supply can improve the quality of life of people living in these areas. Renewable energy technology can play a key role in electricity generation, as grid expansion is not a cost-effective option. In this study, we focused on the techno-economic feasibility and optimal design of a hybrid micro-hydro-photovoltaic-diesel-battery-wind power system designed to electrify a typical remote village located in the southern part of Nigeria. We aimed at achieving the electrification at minimal cost while taking into cognizance the constraints of environmental pollutant emission. In this study, the technical details, as well as the economic feasibility of setting up such a power system, were determined using the hybrid optimization of multiple energy resources (HOMER) simulation tool. Different combinations of energy resources including solar, wind, hydro, and diesel were compared and analyzed. The system performance and economics using some determinant factors such as the cost of energy, operation, and maintenance cost, net present cost, excess electricity, capacity shortage, generator fuel consumption rates, and cost, load fulfillment, and CO2 and other pollutant gas emission savings were determined. The experimental results and the comparative analysis revealed that a hybrid hydro/PV/wind/diesel/battery system was the most ideal and preferred option for off-grid rural electrification. The simulation results also indicated that the optimal system had a net present cost (NPC) and cost of energy (COE) of 1.01mand1.01 m and 0.106/kWh, respectively, with a renewable fraction of 77.4% and environmental pollutant emission of 228,945 kg/year. This system was found to be environmentally friendly as it emitted the least pollutant gas among all the considered configurations. Bearing in mind the recent advocacy towards the actualization of Sustainable Development Goal (SDG) number 7, this work was found to be in alignment with the tenet of “Affordable and Clean Energy”
    corecore